THERMAL REACTIVITY OF SODIUM MANGANESE DECAVANADATES

C. Göczeová

DEPARTMENT OF INORGANIC CHEMISTRY, FACULTY OF NATURAL SCIENCES, KOMENSKY UNIVERSITY, MLYNSKÁ DOLINA, 842 15 BRATISLAVA, C.S.F.R.

(Received February 20, 1991)

The hydrates of sodium manganese decavanadates are thermally unstable: Na4MnV10O28 \cdot 19H2O decomposes on dehydration to give Mn(VO3)2, NaVO3 and NaV3O8, while Na2Mn2V10O28 \cdot 20H2O decomposes to Mn(VO3)2, NaVO3, NaV3O8 and NaV6O15. At a lower n(Na) : n(V) molar ratio in the starting compound, a product containing a bronze with a higher vanadium(IV) content is formed. The mixtures of products are stable in the temperature ranges 500-1000°C, and 610-1000°C, respectively.

Introduction

The structure of the hydrates of decavanadates is stabilized by crystal water. The parent structure decomposes on hydration. The course of thermal decomposition of a decavanadate depends on the bonding properties of the cation. It has been found that on thermal decomposition of the hydrates of decavanadates of bivalent cations, the corresponding metavanadate and vanadium pentoxide are formed [1]. The products of thermal decomposition of the manganese decavanadate are $Mn(VO_3)_2$ and V_2O_5 [2]. NaVO₃ and vanadium bronze, NaV₃O₈, were found to be formed on decomposition of the hydrate of sodium decavanadate [1, 3]. The nature of the compounds formed on thermal decomposition of the crystallohydrates of sodium manganese decavanadates is not known so far.

The present paper deals with the dehydration and thermal decomposition of $Na_4MnV_{10}O_{28} \cdot 19H_2O$ and $Na_2Mn_2V_{10}O_{28} \cdot 20H_2O$, and with the thermal reactivity of the compounds formed on dehydration.

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Experimental

 $Na_4MnV_{10}O_{28} \cdot 19H_2O$ and $Na_2Mn_2V_{10}O_{28} \cdot 20H_2O$ were prepared by the reaction of NaVO₃, Mn(ClO₄)₂ and HClO₄, according to [4]. Their purity was verified by chemical analysis, via their X-ray diffraction patterns and by IR spectroscopy.

The thermal analysis was performed on a Q-1500 derivatograph (MOM, Budapest), under the following conditions: temperature interval $20-1000^{\circ}$ C, air atmosphere, heating rate 10 deg·min⁻¹, sample weight 200 mg, Pt crucible, Al₂O₃ as reference material. In order to explain the processes connected with endo and exo effects, the dynamic heating was interrupted at chosen temperatures. The products obtained were cooled to room temperature and identified by X-ray phase analysis and IR spectroscopy. The X-ray powder diffraction patterns were taken on a Philips PW 1050 diffractograph equipped with a copper anticathode and nickel filter. The infrared spectra were taken on a Perkin-Elmer 180 spectrophotometer, using the Nujol mull technique.

Results and discussion

Thermal decomposition of Na4MnV10O28 · 19H2O

The thermoanalytical curves (Fig. 1) show that the dehydration is a onestep process (70-250°C). The total mass loss up to 500°C [$\Delta m(\exp)$] is

Fig. 1 Thermoanalytical curves of Na4MnV $_{10}O_{28}$ ·19H2O; o - interruption of heating

Fig. 2 IR spectra of Na4MnV₁₀O₂₈·19H₂O (a), and products of its thermal decomposition at: 250°C (b); 545 and 1000°C (c)

23.50% [$\Delta m(\text{calc.}) = 23.66\%$]. The endo 'shoulder' observed in the range 250-395° is connected with the formation of new phases. Although the IR spectra of the product obtained at 250°C (Fig. 2b) exhibits some changes, the product is X-ray amorphous. The formation of new phases was observed in the temperature range 395-500°C too. The X-ray phase analysis and the IR spectra of the product obtained at 500°C indicate that Mn(VO₃)₂, NaVO₃ and vanadium-oxygen bronze, NaV₃O₈, are formed as decomposition products.

The mixture of compounds melts in the temperature range 500-600°C (two endothermic peaks, with minima at 535 and 580°C). The cooling of the melt obtained on heating the mixture up to 545, 600 and 1000°C, respectively, yielded the same compounds as those identified before melting (500°C) (Table 1, Fig. 2c).

Thermal decomposition of Na₂Mn₂V₁₀O₂₈ · 20H₂O

The dehydration of $Na_2Mn_2V_{10}O_{28} \cdot 20H_2O$ (Fig. 3) in the temperature range 70-230°C was found to be a two-step process. The mass loss corresponds to the release of 10 moles of water in each step. The mass loss (up to

····					
<i>d</i> , nm	Irel.		<i>d</i> , nm	Irel.	
0.697	100	B N	0.244	5	ВM
0.619	x	Μ	0.232	13	NBM
0.575	2	В	0.224	18	В
0.533	x	В	0.220	2	М
0.492	4	Ν	0.215	2	М
0.468	x	Ν	0.213	2	Ν
0.456	2	В	0.209	3	M N
0.441	7	ВM	0.196	5	BN
0.427	2	М	0.192	2	Μ
0.386	8	в	0.190	3	Μ
0.367	2	BN	0.185	x	Ν
0.349	12	В	0.183	2	В
0.345	6	N	0.182	3	ΒN
0.338	4	в	0.180	9	В
0.325	13	NM	0.176	4	ВМ
0.320	26	В	0.175	3	N B
0.314	13	M N	0.172	6	N B
0.309	14	Μ	0.168	x	М
0.302	28	BM	0.165	4	BNM
0.285	x	Ν	0.1595	3	М
0.276	3	Ν	0.1587	4	В
0.272	6	М	0.1578	3	BMN
0.265	5	N B	0.1576	x	В

Table 1 Interplanar distances (nm) in products of thermal decomposition of Na4MnV₁₀O₂₈ · 19H₂O at 500, 545 and 1000°C

 $N = NaVO_3[5]$

 $M = Mn(VO_3)_2[4]$ $B = NaV_3O_8[5]$

x = less than 2

120°C) is $\Delta m = 12.73\%$ and the total relative mass loss up to 230°C is Δm (found) = 25.33% [Δm (calc.) = 24.45%]. The substance obtained after the second step at 215°C is amorphous. The structure of the starting compound decomposes after the release of the final moles of water. The exothermic maximum at 258°C in the DTA curve indicates the formation of new phases. The products obtained after the exothermic process was completed (at 270 and 320°C) are amorphous. In the temperature range 230-570°C, a further small mass loss (1.34%) was observed, which is con-

nected with reduction and the formation of vanadium-oxygen bronzes of sodium. The X-ray phase analysis (Table 2) and the IR spectrum (Fig. 4) of the substance obtained at 550° show that $Mn(VO_3)_2$, NaVO₃, and vanadium bronzes, NaV₃O₈ and NaV₆O₁₅, are formed.

Fig. 3 Thermoanalytical curves of Na2Mn2V10O28.20H2O; o - interruption of heating

Fig. 4 IR spectra of Na₂Mn₂V₁₀O₂₈·20H₂O (*a*) and products of its thermal decomposition at various temperatures: 550°C (*b*), 610 and 1000°C (*c*)

610, 700 and 1000°C			550°C		······
<i>d</i> , nm	I _{rel.}		<i>d</i> , nm	Iret.	-
0.949	x	В	0.938	8	В
0.720	45	V	0.720	19	v
0.697	100	B N	0.689	82	B N
0.619	x	Μ	0.619	8	Μ
0.583	х	ВV	0.577	7	В
0.562	x	v	0.558	4	v
0.531	x	в	0.531	7	в
0.501	х	N V	0.502	4	N
0.479	3	N V	0.473	8	N
0.440	4	M B	0.440	20	М
0.427	17	М	0.429	9	М
0.384	4	ΒV	0.385	16	в
0.362	5	NBV	0.362	6	N B
0.347	8	NBV	0.347	22	ВV
			0.344	19	N
0.337	5	ВV	0.336	19	ВV
0.326	14	M N	0.326	66	N M
0.320	12	ВV	0.319	82	ВV
0.316	20	M N	0.316	100	M N
0.305	49	VM	0.308	54	VM
0.303	70	ВМ	0.303	95	Μ
			0.300	52	в
0.291	9	ВV	0.291	16	ВV
0.284	x	Ν			
0.280	x	Ν			
0.273	13	МV	0.273	59	мv
0.265	x	BN	0.264	9	B N
0.256	2	v	0.256	8	v
0.251	2	v	0.250	3	v
0.243	2	МV	0.244	10	ΜV
0.242	4	ΒV	0.241	4	В
0.232	17	N B M	0.232	42	NBM
0.226	13	ΒV	0.226	28	ВV
0.221	7	Μ	0.221	11	Μ
0.217	22	v	0.217	7	v
0.215	22	M N	0.215	8	Μ

Table 2 Interplanar distances (nm) in products of thermal decomposition of Na2Mn2V10O28 · 20H2O at:

610, 700 and 1000°C			550°C		
 <i>d</i> , nm	Irel.		<i>d</i> , nm	Irel.	
 			0.213	10	N
0.208	4	M N	0.207	20	M N
0.200	2	v	0.200	11	v
0.196	4	ΒN	0.196	12	N B
0.192	4	мv	0.192	13	νм
0.190	4	Μ	0.190	16	М
0.186	2	МV	0.188	15	NV
0.1823	x	В			
0.1817	4	ΒN	0.1816	5	в
0.1800	5	в V	0.1799	30	В
0.1762	8	BMNV	0.1765	32	BMNV
			0.1743	6	в
0.1716	3	ΒN	0.1717	11	N B
0.1682	2	М	0.1685	6	мν
0.1669	x	v			
0.1644	6	BMNV	0.1646	17	вv
0.1597	3	ВМ			
0.1590	2	v			
0.1580	x	BMN			
0.1555	x	В			
0.1543	9	ВМV	0.1543	29	ВМV

Table 2 (continued)

 $N = NaVO_3[5]$

 $M = Mn(VO_3)_2 [4]$

 $B = NaV_3O_8[5]$ V = NaV_6O_{15}[5]

x = less then 2

In the temperature interval $550^{\circ}-610^{\circ}$ C, an endothermic peak with minimum at 578° C was observed, followed by a small peak between 610° and 700° C, corresponding to melting of the mixture. On cooling of the melt obtained by heating to 610° , 700° or 1000° C, the same components crystallized out as those present in the mixture before melting (550° C). Although we identified the same substances, the IR spectra of the products formed at 550° and 610° C differed. In this region, a further small mass loss was observed, which indicates oxygen release, probably according to the equation:

$$5NaV_3O_8 \xrightarrow{-1/2O_2} 2 NaV_6O_{15} + 3NaVO_3$$

The small endothermic peak in the range $800^{\circ}-815^{\circ}$ C probably corresponds to the melting of Mn(VO₃)₂ in the mixture.

The results show that hydrates of sodium manganese decavanadates are thermally unstable. Their dehydration starts at 70°C. The anhydrous substances are decomposed. The formation of new compounds, completed at 500° and 610°C, respectively, can be described by the equation:

$$Na_{4}MnV_{10}O_{28} \cdot 19H_{2}O \xrightarrow{-19H_{2}O} Mn(VO_{3})_{2} + 2NaVO_{3} + 2NaV_{3}O_{8}$$

$$Na_{2}Mn_{2}V_{10}O_{28} \cdot 20H_{2}O \xrightarrow{1/2O_{2}} 2Mn(VO_{3})_{2} + 3/5NaVO_{3} + NaV_{3}O_{8} + 2/5NaV_{6}O_{15}$$

Manganese and sodium metavanadates and vanadium bronzes are formed by thermal decomposition. At a lower n(Na) : n(V) molar ratio in the starting compound, a product containing a bronze with a higher vanadium(IV) content (NaV^{IV}V₅^VO₁₅) is formed The mixtures of products are stable in the temperature ranges 500°-1000° and 610°-1000°, respectively.

References

- 1 L. Ulická and L. Zúrková, J. Thermal Anal., 20 (1981) 147.
- 2 V. N. Bulygina, I. A. Bezrukov and V. L. Zolotavin, Mater. I. Všesojuz, Sovešc. Chim. Technol. Primenenija Vanádija, Perm 1972, p. 335.
- 3 L. Ulická, L. Zúrková and V. Suchá. Proc. 7th Conf. Coord. Chem., 297 Bratislava-Smolenice, 1978.
- 4 C. Göczeová, Acta Fac. Rerum. Natur. Univ. Comenianae (Chimia), 34 (1986) 63.
- 5 G. A. Kolta, J. F. Hewaidy, N. S. Felix and N. N. Girgis, Thermochim. Acta, G (1973) 165.

Zusammenfassung — Hydrate von Natrium-magnesiumdekavanadat sind thermisch instabil. Na4MnV₁₀O₂₈ 19H₂O zersetzt sich durch Dehydratierung in Mn(VO₃)₂, NaVO₃ und NaV₃O₈ und Na2Mn₂V₁₀O₂₈ 20H₂O in Mn(VO₃)₂, NaVO₃, NaV₃O₈ und NaV₆O₁₅. Bei einem niedrigerem n(Na):n(V) molarem Verhältnis der Ausgangsverbindungen wird ein Produkt geformt, welches eine Bronze mit einem höherem Vanadium(IV)-gehalt enthält. Das Produktegemisch ist im Temperaturbereich 500°-1000°C bzw. 610°-1000°C thermisch stabil.